
(IJIRSE) International Journal of Innovative Research in Science & Engineering  

ISSN (Online) 2347-3207 

The Transport Properties and Superconducting 

Transition Temperature Tc of Transition Metals 

 

 

R. S. Singh, Lav Singh* and Sanjana Singh**   

Department of Physics, Faculty of Science,  J.N.V. University jodhpur (Rajasthan) 

*Department of Civil Engineering, 

 **Deptt of Computer Science and Engineering 

      Jaypee University of Information Technology,Waknaghat, Solan, Himachal Pradesh  

 

 

 

Abstract— The electrical resistivity and the thermo -electric power of the molten transition metals have 

been investigated using the pseudo- potential approach. The formalism includes the effect of d- bands 

explicitly. A good agreement for molten transition metals Ni and Pd is observed. Superconducting 

transition temperature of transition metal Selenium also calculated. 
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I. INTRODUCTION  

The electrical transport properties of molten metals have been a favourable subject with the theoretical workers 

using model potential approach. A good success has been obtained in the case of simple and polyvalent molten  

metals  by Ziman [1] and his co-workers [2]. The same formalism has been extended [3] to the case of liquid 

noble metals also with mixed success. The molten transition metals could not be investigated in the same 

approach of their complex structure due to the d-bands. The t-matrix formalism [4] for the liquid transition 

metals  have  been only qualitative. Therefore, in the present paper the author  has formulated the expressions 

for the electrical resistivity and the thermo electric power of liquid transition metals taking into account the 

effect of d-bands explicitely in the model potential approach. 

 The formulation is carried out in terms of Dirac time dependent perturbation theory. Suppose a single 

ionic centre scatters an electron from state  ⃗⃗⃗   to   .  The time dependent Schrodinger equation is given by  

               
  

  
                                                 (1) 

 

 Where Ho is the Hamiltonian in the absence of the scattering  centre. Let the stationary states of Ho be 

 p( r


) with corresponding eigen values Ep. The effect of d-bands will be to modify the wave function  p( r


). 

The wave function at time t will then be written as 
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 Where the states  rd


  are the atomic d - states. According to Harrison [5], these d-states satisfy. 

     rrErH dddd


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 Where    is given by 
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 And    is the difference between the atomic potential and the true potential in the neighbourhood of 

single ion. The probability of the electron being found in state    at time  t is  │ap(t)│
2 

. If the electron is in state 

k at time t = o then, 
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Substituting this into the wave equation (1) and integrating over the volume   of the metal after multiplying by  

  
        , I find 
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The electrical resistivity is then calculated following  Ziman's [1] analysis and is given by  
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Where m and e are electronic mass and charge respectively. KF is the Fermi wave vector and   is the angle 

between states  ⃗  and    .Further, 

|   |
 
     ( )| ( )|  

And the analysis of Harrison [5] provides to the second order in    
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Substituting these values and changing the variable of integration, one evaluates. 
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The same expression can be obtained in another way also. Moriarty [3] has considered the effective model 

potential for transition metals as the sum of the model potential and the by hybridization term. In the present 

case, the pseudo-potential can be taken as the model potential  ( ) and the hybridization term is given by 

approximately (     ) for the resistivity of molten transition metals. The integral in equation (9) is 

dominated by the value at       Evans [6] and, therefore, to a good approximation, the electrical resistivity 

can be expressed as  
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Using this equation, the thermo-electric power will be given by 
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where I have assumed that structure factor  (   )and the model potential  (   ) are independent of energy. 

The equations (10) and ( 11) were used to calculate the electrical resistivity and the thermo-electric power of 

liquid nickel and palladium. The input date used in the calculations are given in table (1) with the references 
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therein. The result are  shown in table (2) along with the experimental values. It can be seen that the electrical 

resistivity agree very well with the experimental values. The deviation in the case of the thermo-electric power 

can be due to the assumptions made in deriving equation (11). 

 

RESULTS AND DISCUSSIONS 

Table I 

Input data (all quantities are in atomic units)  

Metal Z[7] Ed    EF ra  (   )[ ] 

Nickel Palladium  0.83 

0.59 

0.5081 

0.3324 

0.4635 

0.3139 

0.44 

0.57 

0.70 

1.50 

 

    Where            
         

      

 

Table II 

Electrical resistivity and thermo-electric power of liquid transition metals 

Metal Temp.(K)  cal  exp Qcal Qexp 

    Ni     1725 82.82 85.00 -20.60 -36.00 

    Pd     1825 79.01 83.00 -46.89 -41.00 

  

The calculated results are in good agreement with the experiment data. 

Theory and Calculation of superconducting temperature Tc for bcc Se:  

The superconducting transition temperature Tc is calculated by using Allen Dynes [9] and McMillan [10] 

formula in given as. 
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Usually   is called the dimensionless electron phonon coupling constant  log the logarithmic averaged phonon 

frequency and 𝜇* the effective screened coulomb repulsion constant whose value is usually taken to be between 

0.1 to 0.15. In the case of monatomic metals 𝝀 can be expressed in the following form. 

 

                             𝝀=
 (  )    

     
 =

 

     
                                          (d) 
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Where M is the mass of the atoms and < 2
> denotes the average of squared phonon frequencies. Further <I

2
> 

represents the Fermi surface average of squared electron phonon coupling interaction and   =N (  )<I
2
> is 

called the Hopfield parameter. 

The electron phonon coupling constant 𝝀 and the superconducting transition temperature Tc calculated as a 

function of pressure for body centered cubic Selenium. The two values for Tc correspond to two different values 

of 𝜇* (0.10 to 0.12). The units of N(  ) and   are state/Ryd/atom/spin and Ryd/A
2
, respectively. 

 

Table III 

 

P(GPa) N(  ) 𝜼     (k) <ω
2
><k

2
> 𝝀 Tc(k) 

128.6 2.73 0.73 224.73 291.92
2
 0.83 11.29,9.90 

149.6 2.62 0.75 248.03 -316.41
2
 0.73 9.53, 8.11 

165.6 2.55 0.77 264.62 335.11
2
 0.66 8.03, 6.64 

 

The value of 𝝀 increases, but the rate of change exceeds that of       As a result the value of Tc increases 

considerably with decreasing pressure. The results agree well with the experimental data. 
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