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Abstract-The flow of a viscous fluid over a thin deformable porous layer fixed to the solid wall of a
channel is considered. The upper solid wall moves with constant velocity U0.The flow in the deformable
porous layer is governed by a modified Darcy law based on binary mixture theory. The flow over the
deformable porous layer is governed by Navier-Stokes equations. The expressions for the displacement of
the porous medium and the fluid velocity are obtained on solving the governing equations in the free flow

and porous flow regions. The effects of various physical parameters such as
f and  on the velocity and

displacement are discussed in detail. When the thickness of the porous layer  tends to zero and 1f  ,
the results obtained reduce to the classical ones of Yuan [1] for the Couette flow between parallel plates.
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I. INTRODUCTION

Viscous flow through and past deformable porous media has been studied experimentally by many
researchers with a view to understand some practical phenomena such as transpiration colling and gaseous
diffusion in arteriar walls. Most of the research works available deal with flow through rigid porous media.  But
when a biofluid flows in a physiological system, such as blood vessel there will be an interaction between free
flow and tissue regions. Thus the study of flow through and past a deformable porous layer is necessitated.

The study of deformation in porous materials with coupled fluid movement was initiated by Terzaghi
[2] and later continued by Biot [3],[4],[5] and1956 into a successful theory of soil consolidation and acoustic
propagation. Atkin and Craine (1976), Bowen (1980) and Bedford and Drumheller (1983) made important
works on the theory of mixtures.  Mow et al. (1984) developed a similar theory for the study of biological tissue
mechanics. Using this theory arterial wall permeability is discussed by Jayaraman (1983). The same theory was
also applied by Mow et al. (1985) and Holmes and Mow (1990) for the study of articular cartilages. Much of
this analysis has been on one dimensional or purely radial compression without consideration of the influence of
shear stresses on the deformable porous media.

Barry (1991) discussed the flow of a viscous fluid past a thin deformable porous layer. Rajasekhara,
Rudraiah and Ramaiah(1975) discussed the Couette flow over a naturally permeable bed. Ranganatha and
Siddagangamma (2004) studied a mathematical model for the blood flow in arteries assuming the artery as a
symmetric channel with solid walls attached by a thin deformable porous layer. The aim of the present study is
to revisit the problem solved by Rajasekhara et al. (1975) for Couette flow over a deformable porous layer. The
problem is solved analytically and the results are deduced and discussed.

II. FORMULATION OF THE PROBLEM

The geometry consists of a steady, fully developed Couette flow through a channel with solid walls at
y L  and y h and a porous layer of thickness L attached to the lower wall as shown in Fig.1.  The flow

region between the plates is divided into two layers.  The flow region between the lower plate y L  and the

interface 0y  is termed as deformable porous region whereas the flow region between the interface

0y  and the upper plate y h is designated as free flow region. The fluid velocity in the free flow region
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and porous flow region are assumed to be ( ,0,0)q and ( ,0,0)v respectively. The displacement due to the

deformation of the solid matrix is taken as ( ,0,0)u . A pressure gradient 0( )
p

G
x





is applied, producing an

axially directed flow. Due to the assumption of an infinite channel, there is no x dependence in any of the terms
except the pressure.

Fig.1 Physical Model.

With the assumptions mentioned above, the equations of motion in the free flow and deformable
porous regions are [1991]
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where a is the apparent viscosity of the fluid in the porous material,  is the Lame constant, f is

the coefficient of viscosity, q is the flow velocity, u is the displacement, K is the drag coefficient, 0G is the

pressure gradient and  is the volume fraction of component  and ,s f  for the binary mixture of solid

and fluid phases with 1s f   .

III. NON-DIMENSIONALIZATION OF THE FLOW QUANTITIES

It is convenient to introduce the following non-dimensional quantities.
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In view of the above dimensionless quantities, the equations (1) – (3) take the
following form.  The hats ( ) are neglected here after.
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The parameter  is a measure of the viscous drag of the outside fluid relative to drag
in the porous medium.  The parameter  is the ratio of the bulk fluid viscosity to the apparent
fluid viscosity in the porous layer.

The boundary conditions in non-dimensional form are

: 0, 0y v u    ; (7a)

0: fy q v  (7b)

1
f

dq dv

dy dy
 (7c)

1
s

dq du

dy dy
 . (7d)

01:y q U  (7e)

Equation (7b) equates the fluid velocity at the interface with the volume averaged velocity of the porous
layer. The remaining two equations at the interface 0y  result from the conservation of axial momentum

across the fluid-porous layer interface and the assumption that the proportion of the total stress in the porous
layer borne by each component is proportional to its volume fraction.

IV. SOLUTION OF THE PROBLEM

Equations (4) to (6) are coupled differential equations that can be solved by using the boundary
conditions (7). The displacement and velocities in free flow region and porous regions are obtained as



(IJIRSE) International Journal of Innovative Research in Science & Engineering
ISSN (Online) 2347-3207

2

1 2( )
2

y
q y c y c    (8)

3 4( ) cosh( ) sinh( )
f

v y c y c y


 


   (9)

2
3 4

5 6

cosh( ) sinh( )
( )

2

c y c y y
u y c y c

 
 


     (10)

where 2  and the constants 1c , 2c , 3c , 4c , 5c and 6c are given by
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V. RESULTS AND DISCUSSIONS

In this paper, the steady flow of a Couette flow over a thin deformable porous layer is
investigated. When the thickness of the deformable porous layer 0  and 1f  the
expression for velocity given in (8) reduces to the result of Yuan[1976] for the Couette flow
between two parallel rigid walls.

A. Mass flow rate
The dimensionless flow rate M per unit width of the channel in the free flow region

is defined by
1
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Let pF denote the fractional increase in mass flow rate through the plane Couette

flow over that it would be if the flow were Poiseuillean.Then
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where pM denotes the dimensionless mass flow rate of Poiseuille flow which is obtained

from (13) by setting 0 0U  . In other words
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We note that pF and pM are functions of f , , and .

The above analysis predicts the effect of deformable wall shear on the flow past a porous boundary.
However to know the effect of the porous boundary it is necessary to compare the Couette flow with and

without a porous boundary. This is done in the remaining part of this paper. If 0M denotes the flux of Couette

flow without a deformable layer  and cF denote the fractional increase in mass flow rate through the plane

Couette flow with a permeable bed over what it would be if the flow were Couette flow without a permeable

bed (i.e. 0, 1f   ) .Then
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B. Maximum velocity
The Maximum velocity in the free flow region is given by
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C. Inference
The solutions for the fluid velocities q , v in free flow region and deformable porous region and

displacement of solid matrixu in the deformable porous region are evaluated numerically for different values of

physical parameters such as the volume fraction of component
f , the viscous drag parameter  ,the viscosity

parameter and the thickness of lower wall .

The variation of velocities and displacement in the channel q , v and u with y is calculated, from

equations (8) to (10), for different values of 0U and is shown in figures 2, 3 and 4 for fixed  =2.0, f =0.5,

 =0.5 and  =0.2. We observe that the velocities ,q v and displacement u increase with the increases in the

fluid velocity 0U .

The variation of velocities in the channel q , v with y is calculated, from equations (8) to (9), for

different values of viscosity parameter and is shown in figures 5 and 6 for fixed =2.0, f =0.5, 0U =1.0 and

 =0.2.We observe that the velocities q , v increases with the increase in viscosity parameter .

The variation of velocities in the channel q , v and u with y is calculated from equations (8) to (10),

for different values of volume fraction of component
f and is shown in figures 7, 8 and 9 for fixed  =2.0,

 =0.5, 0U =1.0 and  =0.2.We observe that the velocities q , v increases with the increase in volume fraction

of component f and the displacement u decreases with the increase in f .

The variation of velocity q with y is calculated, from equation (8), for different values of , f and is

shown in figure 10 for fixed  =2.0,  =0.5 and 0U =1.0. We observe that the velocity q increases with the

increase in the thickness of the porous layer . We also observe that the velocity in over the porous layer
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channel is more when compared with the velocity corresponding to the absence of the porous layer. Therefore
the effect of porous layer is to enhance the velocity in the channel.

The variation of mass flow rate M with f is calculated, from equations (12), for different values of

thickness of porous lining  and is shown in figure 11 for fixed  =2.0,

 =0.5 and 0U =1.0. It is found that the mass flux M increases with the increase in the volume fraction

coefficient f . We also observe that the mass flow rate increases with the increase in the thickness of porous

lining .

The variation of mass flow rate M with f is calculated, from equations (12), for different values of

upper plate velocity 0U and is shown in figure 12 for fixed  =2.0,

 =0.5 and  =0.2.It is found that M increases with the increase in the volume fraction coefficient f . We also

observe that the mass flow rate increases with the increase in the upper plate velocity 0U .

The variation of fractional increase in mass flow rate pF with f is calculated, from equations (14),

for different values of upper plate velocity 0U and is shown in figure 13 for fixed  =2.0,  =0.5 and  =0.2. It

is found that pF increase with the increase in the volume fraction coefficient f .We also observe that the

fractional increasing in Mass flow rate increases with the increase in the upper plate velocity 0U .

The variation of fractional increase in mass flow rate pF with f is calculated, from equations (14),

for different values of thickness of porous lining and is shown in figure 14 for fixed  =2.0, 0U =1.0 and

 =0.2.It is found that pF increase with the increase in the volume fraction coefficient f .We also observe that

the fractional increasing increases in Mass flow rate with the decrease in the porous lining .

The variation of mass flow rate for Couette flow without deformable layer cF with f is calculated,

from equations (15), for different values of thickness of porous lining and is shown in figure 15 for fixed

 =2.0, 0U =1.0 and  =0.5. It is found that cF increase with the increase in the volume fraction

coefficient f .We also observe that the mass flow rate for Couette flow without deformable porous layer

increases with the increases in the porous lining .
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