
(IJIRSE) International Journal of Innovative Research in Science & Engineering

ISSN (Online) 2347-3207

IJIRSE/2017/Vol 5. Issue 7/ Page 1

Function Point Analysis: Converting various design elements into
Function Points

Ms. Bhawna Sharma
1
, Ms. Kavita Choudhary

2
, Mr Rajendra Purohit

3

1
M.Tech. Scholar,

2
Associate professor,

3
Research Scholar

Department of CSE

JIET, Jodhpur, India

bvnbhati@gmail.com

Abstract— Determining functional size estimate of a development project is an important and primary step while planning a

project. Functional Size estimation further affects other estimations like cost, budget and schedule of the project. There are

many popular methods to determine functional size of a software project. Function Point Analysis (FPA) is one of the most used

methods among these. Literature survey shows lot of work has been done on performing FPA of different projects. Most of these

works begin with identification and categorization of functions which are needed as input parameters to FPA. There are generic

guidelines available for this phase of FPA. In this work we have covered initial phase of FPA whereby we have some

requirements specifications of a project represented by various notations like Use Case Diagrams, Class Diagrams and Data

Flow Diagrams. We have developed some simple and specific mapping rules to convert these design specification into data and

transaction function of FPA.

Keywords- Software estimation, Functional Size Measurement Methods (FSMM), Function Point Analysis (FPA)

I. INTRODUCTION

The success of a software project is a function of many different factors involving completeness of requirements specified,

completion in time, schedule should not overrun, and cost incurred should be in optimal range of estimated cost. In

simplest terms all these mean actual duration and cost should closely match with estimated duration and cost [8, 13]. And

all these depend on first stage of estimation that involves functional size measurement of the software.

In this paper we will analyze various design specification for the purpose of finding Functional Size Measurement of a

project [9, 10]. We have chosen a Library Management System for this work. We will go through most popular design

models from both types of project modeling approaches - Use Case Diagrams and Class Diagrams commonly used by

Object oriented modeling [3, 4] and Data Flow Diagrams commonly used by Structural Modeling approaches.

II. FUNCTION POINT ANALYSIS (FPA)

Function Point Analysis (FPA) is a Functional Size Measurement Method which was introduced by Albrecht in 1979 [1]. It

measures functional size and complexity of software from user’s perspective, and uses Function Point (FP) as units to

measure the size. FP measures size in logical terms and so it is not dependent on technology used to implement the

software [11]. This makes FPA consistent for various projects implemented in different languages. Effort required to

implement each FP off course depends on technology used [11, 12].

Process of calculating size in terms of FPs [2] is as simple as identifying and counting data and transaction functions and

assigning FPs to these functions based on complexity of each function. Various functions are categorized as one of the

following

A. Data Functions

1 Internal Logical File (ILF) - These are data entities maintained within application boundary.

2 External Interface File (EIF) - These are data entities referred by application but not maintained within

applications. These are availed by some external application.

B. Transaction Functions

3 External Input (EI) – Any data or control information entering the application boundary. These are used to

maintain Internal Logic Files.

4 External Output (EO) - Any data or control information leaving the application boundary. These are generally

either direct information from ILF or some processed information based on data stored in ILFs.

5 External Inquiry (EQ) – Any input data meant for generating some output from ILFs. Input data generally

represent some criteria used to process and retrieve an output.

Table 1 Complexity for External Inputs

FTRs
Data Elements

1-4 5-15 > 15

0-1 Low Low Avg

2 Low Avg Hgh

3 or more Avg Hgh Hgh

(IJIRSE) International Journal of Innovative Research in Science & Engineering

ISSN (Online) 2347-3207

IJIRSE/2017/Vol 5. Issue 7/ Page 2

FPA begins with identifying all data and transaction functions for an application. Further the Function Point Count of the

project is calculated in 3 steps:

1. Determining Functional complexity of all Functions

Complexity of transaction function is based on number of Data Element Types (DETs) referenced and File Types

Referenced (FTR). Complexity of data function is based on number of Data Element Types (DETs) referenced and Record

Element Types (RETs) referenced. Tables 1, 2 and 3 provide detailed criteria for selecting complexity of functions.

2. Calculating Unadjusted Function Point (UFP) Count of the System

An Unadjusted Function Point (UFP) Count is then obtained for each function using Table 4. Sum of these FPs, represents

total UFP for the project.

3. Determining Value Adjustment Factor (VAF) and calculating adjusted Function Point Count

The value adjustment factor (VAF) is based on 14 general system characteristics (GSC's) (Table-5) that rate the general

functionality of the application being estimated. Each characteristic has associated descriptions that help determine the

degrees of influence of the characteristics. The degrees of influence, range on a scale of zero to five, from no influence to

strong influence. Add the degrees of influence for all 14 general system characteristics to produce the total degree of

influence (TDI).

VAF = (TDI * 0.01) + 0.65

The final Function Point Count is obtained by multiplying the VAF times the Unadjusted Function Point (UAF).

 FP = UAF * VAF

Table 2 Complexity for External Outputs and Inquiries

FTRs
Data Elements

1-5 6-19 > 19

0-1 Low Low Avg

2-3 Low Avg Hgh

4 or

more
Avg Hgh Hgh

Table 3 Complexity for Data Files

RETs
Data Elements

1-19 20-50 > 50

0-1 Low Low Avg

2-5 Low Avg Hgh

6 or

more
Avg Hgh Hgh

Table 4 Complexity weights of FPA components

Function type
Complexity

Low Average High

External Input 3 4 6

External Output 4 5 7

External Inquiry 3 4 6

Internal Logical File 7 10 15

External Interface File 5 7 10

(IJIRSE) International Journal of Innovative Research in Science & Engineering

ISSN (Online) 2347-3207

IJIRSE/2017/Vol 5. Issue 7/ Page 3

Table 5 FPA – General System Characteristics

General System

Characteristic
Brief Description

1 Data communications Complexity of communication facilities.

2 Distributed data processing Level of complexity of distributed data and processing functions.

3 Performance In terms of response time and throughput.

4 Heavily used configuration Level of usage of current hardware platform where the application will be executed.

5 Transaction rate Frequency of transactions executed (daily, weekly, monthly)

6 On-Line data entry Percentage of the information is entered On-Line

7 End-user efficiency End-user efficiency required.

8 On-Line update Percentage of On-Line transactions.

9 Complex processing Volume of extensive logical or mathematical processing.

10 Reusability Scope of components reuse.

11 Installation ease Ease of installation.

12 Operational ease How effective and/or automated are start-up, back-up, and recovery procedures?

13 Multiple sites
Was the application specifically designed, developed, and supported to be installed at

multiple sites for multiple organizations?

14 Facilitate change Was the application specifically designed, developed, and supported to facilitate change?

III. OBJECT ORIENTED OR UML MODEL

Most of the projects developed these days use Object Oriented Programming paradigm. UML (Unified Modeling Language)

modeling is a standard set of diagrams used by project managers to represent design specifications. Various structural and

behavioral diagrams comprise UML specifications of a project. In this work we have used Use-Case diagrams among behavioral

models and class diagrams among structural models.

Use-case diagram has three major components – actor, use-case and system. Systems are represented by rectangle and use-cases

as ovals. An actor is basically a user and its connection with use cases is shown using an arrow. Class diagram is a diagram that

shows a collection of the declaration of the model elements, such as classes, class member functions and methods and

relationships between classes.

IV. STRUCTURAL MODEL

Structural Modeling is the design modeling that was used for old projects when programming paradigm used was process oriented

and not Object oriented. It is still relevant in current projects when any project is process intensive in nature. Process intensive

applications typically have well defined set of data entities used by system and processes to maintain those systems. Data Flow

Diagrams (DFD) are one of the most common modeling elements among all. DFDs represent data flow between functions and

database of the system. A Data Flow Diagram (DFD) has 4 components – Function, Input/output, Flow and File/database. These 4

components are shown using circle, rectangle, open box and directed lines respectively.

Figure 1 - Use-Case Diagram of Library Management System

(IJIRSE) International Journal of Innovative Research in Science & Engineering

ISSN (Online) 2347-3207

IJIRSE/2017/Vol 5. Issue 7/ Page 4

Figure 2 Class Diagram of a Library Management System

Figure 3 Data Function identified from Class Diagram

User

Librarian

Transaction

Book

Magazine

Journal

CourseBook Member

Student Faculty

Library

User

Librarian

Book

Magazine

Journal

CourseBook

Maintains

Requests

Maintains

Member Transaction Student

Faculty
Views

(IJIRSE) International Journal of Innovative Research in Science & Engineering

ISSN (Online) 2347-3207

IJIRSE/2017/Vol 5. Issue 7/ Page 5

V. ANALYSIS OF LIBRARY MANAGEMENT SYSTEM

A. Identifying FPA components based on Use Case Diagram and Class Diagram

Mapping Use Case Diagram and Class Diagrams into Data and transaction function of FPA is done as follows [5, 6]. If we look at

Class Diagrams most classes represent data files being maintained by the projects. Inheritance hierarchy of few classes is as

simple as considering a whole class hierarchy as a single data function. Dependencies among classes or various member methods

of class represent transaction functions. Similarly if we look at use case diagrams, subjects being maintained by use-case

represent data functions and phrases representing an action on that subject are a transaction function.

Figure 1 shows Use case Diagram of a Library Management System, Figure 2 shows Class Diagram of same project. Figure 3

shows a breakdown of the class diagram into various data functions namely – Member, Librarian, Book and Transaction. As all

these entities are maintained within application they are all Internal Logic Files (ILF). All transaction functions related to these

ILFs can be obtained from Use-Case Diagram. Table 6 thus obtained shows complexity of all these functions. Complexity of

these functions can be derived by using tables 1, 2 and 3. Requesting a book issue and return by member are considered as part of

actual action of issue and return from librarian, and so are not mentioned as separate transactions.

B. Identifying FPA components based on Data Flow Diagram

Figure 4 shows DFD of a Library Management System. If we look closely at it we can see how easily it can be mapped into data

and transaction functions for the purpose of Function Point analysis [7]. All data files directly represent data functions. If there is

no input to these data files, that means they are external reference files. If data files are being sent some input they represent

Internal Logic Files. All data flows connected to functions represent transaction function. Arrows of these flows tell us about

category of transaction functions. Flow coming in to a function is External Input, Flow out of function is External Output and

Bidirectional arrows represent External Inquiry.

Interestingly, if we now follow above rules for mapping and create a tables for function point calculation it will same as Table 6 –

except that in class diagram we have chosen Librarian also as an ILF. This was a deliberate effort to create a minor difference just

to point out the fact that level of refinement in these diagramming techniques can cause difference in resulting FP count. Provided

both modeling techniques use same level of refinement we will get same FP count after mapping of design elements to FP

components process.

We are not showing table for various data and transaction in this section for this reason only- otherwise it will look repetition of

same items and calculation.

Table 6 Functions identified for Library Management System

Name Type Complexity FP Count

TRANSACTIONS

Search Book EQ Low 5

Create Member EI Low 3

Delete Member EI Low 3

Update Member Details EI Low 3

Add Book EI Low 3

Update Book Details EI Low 3

Remove Book EI Low 3

Issue Book EI Low 3

Return Book EI Low 3

Calculate Fine EQ Low 5

FILES

Member ILF Low 7

Librarian ILF Low 7

Book ILF Low 7

Transaction ILF Low 7

Total Unadjusted FP 62

(IJIRSE) International Journal of Innovative Research in Science & Engineering

ISSN (Online) 2347-3207

IJIRSE/2017/Vol 5. Issue 7/ Page 6

Figure 4 Data Flow Diagram of Library Management System

VI. CONCLUSION

By the help of above work we reach on following conclusion:

Function Point Analysis method can be effectively applied for Functional Size Measurement of a project irrespective of type of

design models. If we observe carefully most of the design models which are used for requirements specification including the

ones used in this work somehow have to specify functions to be performed by the project in way that we can identify data

maintained by these functions and input or output requirements for these functions. We have successfully demonstrated it in this

work. We showed -while performing Function Point Analysis of a project, simple mapping rules can be applied to identify

components of FPA from various design models. Once we define these rules for any design element it becomes easier to identify

components of FPA and also it ensures that none of the elements remains unidentified.

Also, we can conclude that FP count of any project derived from its design specifications depends on level of refinement of

design specification instead of type of modeling or diagramming techniques. We will reach to almost same size irrespective of the

fact that we are using structural modeling or object oriented modeling provided that level f refinement of these models is same.

REFERENCES

 [1] A.J Albrecht. Function point analysis. Encyclopedia of software engineering, 1: John Wiley & Sons, 1994.

[2] Function Point Counting Practices Manual Release 4.3.1 (January 2010) https://ainfo.cnptia.embrapa.br/digital/bitstream/item/34989/1/0004-3-1-
Part-0-2010-01-17.pdf

[3] Ribu, Kirsten. 2001. Estimating Object-Oriented Software Projects with Use Cases. Master of Science Thesis, University of Oslo, Department of

Informatics. Schwaber, Ken and Mike Beedle. 2001. Agile Software Development with Scrum. Prentice Hall.
[4] A. Zivkovic, R. Ivan, and H. Marjan, “Automated Software Size Estimation based on Function Points using UML Models”, Information and

Software Technology, Elseiver, 2005

[5] T. Fetcke, A. Abran, and T. Nguyen, “Mapping The OO-Jacobsen Approach to Function Points”, Proceedings of Tools 23’97 – Technology of
Object Oriented Language and Systems, IEEE Computer Society Press, California, 1998

[6] K.v.d. Berg, D. Ton, and O. Rogier, “Functional Size Measurement Applied to UML-base User Requirements”, Retrievable from doc.utwente.nl,

2005

Issue/ return Book

Book issue/return

Request
Charge Fine

Add, remove, search

or update book

Search/update

Member

Add/delete Member

Membership

Request

Membership

management

Books

management
Transactions

management

Books Transactions

Members

Librarian
Member

(IJIRSE) International Journal of Innovative Research in Science & Engineering

ISSN (Online) 2347-3207

IJIRSE/2017/Vol 5. Issue 7/ Page 7

[7] E. Lamma, P. Mello and F. Riguzzi, “A system for measuring function points from an ER-DFD specification,” The Computer Journal , vol. 47, no.3,
pp.358-372, 2004

[8]. Matson, J. E., Barrett, B. E., & Mellichamp, J. M. (1994). Software development cost estimation using function points. Software Engineering, IEEE

Transactions on, 20(4), 275-287.
[9] F. Gramantieri, E. Lamma, P. Mello, and F. Riguzzi, “A System for Measuring Function Points from Specifications,” DEIS – Universita di Bologna,

Bologna. and Dipartimen to di Ingegneria, Ferrara, Tech. Rep DEIS-LIA-97-006, 1997.

[10] H. Mehler and A. Minkiewwicz, “Estimating size for object-oriented software,” in Proceeding of ASM’97 Application in Software Measurement,
Berlin, 1997.

[11]. Felfernig, A., & Salbrechter, A. (2004). Applying function point analysis to effort estimation in configurator development. In International

Conference on Economic, Technical and organizational aspects of Product Configuration Systems, Kopenhagen, Denmark (pp. 109-119).
[12]. Jeng, B., Yeh, D., Wang, D., Chu, S. L., & Chen, C. M. (2011). A Specific Effort Estimation Method Using Function Point. Journal of Information

Science and Engineering, 27(4), 1363-1376.

[13]. Kumari, S. & Pushank, S. (2013). Performance analysis of the software cost Estimation Methods: A Review. International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 3(7), pp. 229 - 238.

